Number Word Sequences from 1-100

Saying short FNWS's: Start counting from x count up to y Numbers sequences should cross decades

Sequencing numerals: Place out cards x to y randomly arranged. Put these cards in order. Now say the numbers as you point to them.

Counting items in two screened collections: Here are x red counters. I'm going to cover these counters. Place out y green counters. Here are y green counters. I'm going to cover these y green counters. X and y, how many counters are there altogether? Would you like to check?

Describing and Recording Partitions of a Number: Place out a pair-wise ten frame for x. How many dots are on this frame? Tell me two numbers that make x. Can you see those two numbers on the frame? Show me where the two numbers are. Can you tell me another two numbers that make x? Try to make x in as many ways as you can. I am going to write down the ways of making x. Use an appropriate notation system to record the partitions. Repeat for other numbers using both pair-wise and five-wise.

Saying short BNWS's: Start counting from x and count back to y

Sequencing decade numerals: Place out the decade cards from 10 to 40, randomly arranged. Put these cards in order. Now say the numbers and point to them.

Similarly order other decade cards.

Counting items in a row with some items screened: Place out a row of 30 dots. Place a marker over the xth dot. This number is x. Place a small screen over the next (three) dots. Point to screen There are (three) under here. Point to next unscreened dot. What number is this one.

Counting partitioning involving sums of 10: Place out an empty five frame with x red counters together. How many red counters? How many empty boxes? How many empty boxes and counters altogether?

Repeat for all combinations of 5

Shown ➔ Flashed

Saying one, two three numbers after a given number: I'm going to say a number and I want you to say the next number after the number I say. This time say the next 2/3 numbers after the number I say.

Sequencing off-decade numerals: Place out off-decade cards from 6 to 36, randomly arranged. Put these cards in order. Now say the numbers and point to them.

Similarly order other off-decade cards.

Missing addend tasks: Briefly display and then screen x counters. Here are x red counters. Ask the child to look away while screening y green counters. While you were looking away I added some green counters and now there are ___ in all. How many green counters are there? Would you like to check?

Counting partitioning involving sums of 5: Place out an empty five frame and place x red and y green counters (totalling 5) in the squares. How many counters altogether? How many red counters? How many green counters?

Shown ➔ Flashed

Saying one, two three numbers before a given number. I'm going to say a number and I want you to say the number before the number I say. This time say the next 2/3 numbers before the number I say.

Ordering 2-digit numerals: Place out four cards in the number range 1 to 30 (e.g. 9, 14, 23, 24) randomly arranged. Put these cards in order. Now say the numbers as you point to them.

Increase range 1 to 40, 40 to 100, 1 to 100.

Removing item task: Briefly display and then screen x counters. Here are x red counters. Ask the child to look away while removing y counters. There was x counters and while you were looking away I removed y counters. How many counters are left? Would you like to check?

Using 5 to partition numbers in the range 6 to 10: Place out an empty ten frame. Place 5 red counters in the upper row and x red counters in the lower row. How many counters altogether? How many counters in the upper row? How many counters in the lower row? Similarly with other combinations involving 5

Shown ➔ Flashed

Counting the number of jumps forwards from a to b: I am going to count the number of jumps from one number to another. How many jumps from 6 to 8, six, seven, eight-two jumps. Now you can count the jumps from 4 to 6. Repeat for other numbers within the range 1-100.

Numerical recognition: Place out tens cards in the range 1 to 30, randomly arranged. Point to the number x. Point to the number y. Similarly using the cards in the range 1 to 50, 50 to 100, 1 to 100.

Missing subtrahend tasks: Briefly display and then screen x counters. Here are x red counters. Ask the child to look away while removing y counters and then screening y counters. There were x counters and while you were looking away I removed some counters and now there are only ___ x. How many did I remove? Would you like to check?

Counting partitioning involving sums of 10: Flash an empty TEN frame with x red counters together and y yellow counters together (they should total 10) How many red counters? How many yellow counters? How many altogether?

Repeat for all combinations of 10

Describing visible arrays: Place out a 4 x 6 array. Here is an array? What do you notice? These are rows. How many rows are there? What can you say about each row? These are called columns. How many columns are there? What can you say about each column?

Similarly for arrays 3x5, 3x2, 6x3 and so on

Saying one, two three numbers after a given number: I'm going to say a number and I want you to say the number after the number I say. This time say the next 2/3 numbers after the number I say.

Sequencing off-decade numerals: Place out off-decade cards from 6 to 36, randomly arranged. Put these cards in order. Now say the numbers and point to them.

Similarly order other off-decade cards.

Removing item task: Briefly display and then screen x counters. Here are x red counters. Ask the child to look away while removing y counters. There was x counters and while you were looking away I removed y counters. How many counters are left? Would you like to check?

Using 5 to partition numbers in the range 6 to 10: Place out an empty ten frame. Place 5 red counters in the upper row and x red counters in the lower row. How many counters altogether? How many counters in the upper row? How many counters in the lower row? Similarly with other combinations involving 5

Shown ➔ Flashed

Combining numbers to 10: Place out a pair-wise ten frame for x. How many dots are on this frame? Tell me two numbers that make x. Can you see those two numbers on the frame? Show me where the two numbers are. Can you tell me another two numbers that make x? Try to make x in as many ways as you can. I am going to write down the ways of making x. Use an appropriate notation system to record the partitions. Repeat for other numbers using both pair-wise and five-wise.

Counting the number of jumps forwards from a to b: I am going to count the number of jumps from one number to another. How many jumps from 6 to 8, six, seven, eight-two jumps. Now you can count the jumps from 4 to 6. Repeat for other numbers within the range 1-100.
Counting the Number of Jumps backwards from a to b: I am going to count the number of jumps from one number back to another. How many jumps from 10 back to 7. Ten-- nine, eight, seven – 3 jumps. Now you can count the jumps from 13 back to 9. Repeat for other numbers within the range 1-100.

Numeral Identification:

- Place out tens cards in the range 1 to 30, randomly arranged. Point to the number x. What number is this? Point to the number y. What number is this?
- Similarly using the cards in the range 1 to 50, 50 to 100, 1 to 100.

Subtractive Tasks Using a Row:

- Place out a row of 20 dots. Place a marker adjacent to the xth spot. This is number x. Place a small screen over the next y dots. Point to the next dot. This is number __. Point to the screen. How many are under here? Would you like to check?
- Place on x red counters. How many empty squares? How many counters? How many empty squares?
- Watch to see if you were correct. Flash the ten frame. Were you correct? How many squares altogether? How many dots altogether? Explain how you know there are seven dots.
- Repeat for Pairs Patterns
- Similarly for other pairs of addends with sum less than or equal to 10

Forwards and Backwards Using the Sequence of Decade Numbers from 10 to 100: I'm going to count by tens to 100. Ready . . .10, 20…100. Now you count by tens. This time I'm going to count backwards by tens from 100. Ready . . .100, 90…10. Now you count backwards from tens. This time start from 50 and count forwards/backwards by tens.

Numeral Tracks:

- Place out the numeral track, with numeral uncovered. Watch me as I count forwards and backwards. Point to each numeral in turn while counting forwards and then backwards. Now you count forwards and then backwards and point to each number in turn. Close lid on the Numeral Track. And repeat previous activity. Uncovering the lids AFTER saying each number.

Partitioning 10: Flash an empty ten frame. How many squares altogether? I am going to put on x red counters. How many empty squares will there be? Place on x red counters. Watch to see if you were correct. Flash the ten frame. Were you correct? How many squares altogether? How many counters? How many empty squares?

Combining Two numbers Using Flashed Frames: Flash a ten frame showing a five-wise pattern 5. How many dots are on this frame? Flash a ten frame showing a five-wise pattern 2. How many dots are on this frame? How many dots altogether? Explain how you know there are seven dots.
- Repeat for Pairs Patterns
- Similarly with 2x5, 3x5, 6x2, 4x4 and so on.

Determining the Number of Dots on Visible Arrays: Place out a 2x5 array. This array has two rows of 5 dots. How many dots are there altogether? The array has x rows of y dots. How many dots are there altogether? How many rows are there? How many dots altogether? Explain how you know there are seven dots.

Hundred Square:

- Place out a hundred square. Look away while I cover a number. Place a small cover over a numeral. What number did I cover? Look away while I cover some numbers. Cover a range e.g. 43-46. Point to one of the covered numbers. What number is behind this cover? Would you like to check?
- Blank Hundred Square: Write the fours column on the square. Read the numbers that I have written. What patterns do you see? Place a marker on the 26th square. What number goes here? Write the numeral 26 in the appropriate square. Similarly with 27, 28, 23 and so on.
- Repeat activity for other columns and rows on the square.

Comparison Task:

- Place out x (horses). Place out y (jockeys). Here are x horses and y jockeys. If each jockey got onto a horse, how many (horses) would not have a (jockey).

These pages are designed as quick reference guide to the teaching phase detailed in pages 126-166 of Teaching Number: Advancing Children’s Skills and Strategies ISBN 1-4129-2185-6. Please refer to the book for more detailed information.